A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Facts about Gadolinium

Gadolinium

Gadolinium gallium garnet (Gd3Ga5O12) is a material with good optical properties.

Gadolinium

Gadolinium is used for making gadolinium yttrium garnets, which have microwave applications, and gadolinium compounds are used for making phosphors for color TV tubes.

Gadolinium

Due the extremely high neutron cross-section of gadolinium, this element is very effective for use with neutron radiography.

Gadolinium

Gadolinium is used in nuclear marine propulsion systems as a burnable poison.

Gadolinium

Gadolinium is an inner transition metal (or lanthanide) that lies in period 6 of the periodic table, between europium and terbium.

Gadolinium

Gadolinium (chemical symbol Gd, atomic number 64) is a silvery white metallic element and a member of the lanthanide series of chemical elements.

Gadolinium

A single crystal of gadolinium oxyorthosilicate (GSO) is used as a scintillator in medical imaging equipment such as positron emission tomography (PET).

Gadolinium

Gadolinium demonstrates a magenetocaloric effect whereby its temperature increases when it enters a magnetic field and decreases when it leaves the magnetic field.

Gadolinium

Gadolinium has the highest thermal neutron capture cross-section of any (known) element (about 49,000 barns), but it also has a fast burn-out rate, limiting its usefulness as a material for nuclear control rods.

Gadolinium

Gadolinium reacts slowly with water and is soluble in dilute acid.

Gadolinium

Gadolinium is also used for manufacturing compact discs and computer memory.

Gadolinium

The gadolinium slows the initial reaction rate, but as it decays other neutron poisons accumulate, allowing for long-running cores.

image: t3.ftcdn.net
Gadolinium

In X-ray technology, gadolinium is contained in the phosphor layer suspended in a polymer matrix at the detector.

Gadolinium

The effect is considerably stronger for the gadolinium alloy Gd5(Si2Ge2).

Gadolinium

In 1880, Swiss chemist Jean Charles Galissard de Marignac examined samples of didymium and gadolinite by spectroscopy and observed the unique spectral lines produced by gadolinium.

Gadolinium

At room temperature, gadolinium crystallizes to produce its "alpha" form, which has a hexagonal, close-packed structure.

Gadolinium

Today, gadolinium is isolated by techniques such as ion exchange and solvent extraction, or by the reduction of its anhydrous fluoride with metallic calcium.

Gadolinium

Gadolinium becomes superconductive below a critical temperature of 1.083 K. It is strongly magnetic at room temperature and exhibits ferromagnetic properties below room temperature.

Gadolinium

Naturally occurring gadolinium is composed of 5 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd and 158Gd, and 2 radioisotopes, 152Gd and 160Gd, with 158Gd being the most abundant (24.84 percent natural abundance).

Gadolinium

French chemist Paul Йmile Lecoq de Boisbaudran separated gadolinia, the oxide of gadolinium, from Mosander's yttria in 1886.

Gadolinium

Both gadolinium and gadolinite were named after the Finnish chemist and geologist Johan Gadolin.

Gadolinium

Another new scintillator for detecting neutrons is gadolinium orthosilicate (GSO - Gd2SiO5: Ce).

Gadolinium

Terbium-doped gadolinium oxysulfide (Gd2O2S: Tb) at the phosphor layer converts X-rays released from the source into light.

Gadolinium

Gadolinium is also used as a secondary, emergency shut-down measure in some nuclear reactors, particularly of the CANDU type.

Gadolinium

In X-ray technology, gadolinium is contained in the phosphor layer suspended in a polymer matrix at the detector.

Related Types